The SLATE Project is to provide fundamental dense linear algebra capabilities for today’s high-performance computing (HPC) community. To this end, SLATE will provide basic dense matrix operations (e.g., matrix multiplication, rank-k update, triangular solve), linear systems solvers, least square solvers, singular value and eigenvalue solvers.

The ultimate objective of SLATE is to replace the Scalable Linear Algebra PACKage (ScaLAPACK) library, which has become the industry standard for dense linear algebra operations in distributed memory environments. However, after two decades of operation, ScaLAPACK is past the end of its lifecycle and overdue for a replacement, as it can hardly be retrofitted to support hardware accelerators, which are an integral part of today’s HPC hardware infrastructure.

This webinar discussed the SLATE Project.

The **presentation slides** are also available here.

**About the Presenter**

**Jack Dongarra** received a Bachelor of Science in Mathematics from Chicago State University in 1972 and a Master of Science in Computer Science from the Illinois Institute of Technology in 1973. He received his Ph.D. in Applied Mathematics from the University of New Mexico in 1980. He worked at the Argonne National Laboratory until 1989, becoming a senior scientist. He now holds an appointment as University Distinguished Professor of Computer Science in the Electrical Engineering and Computer Science Department at the University of Tennessee and holds the title of Distinguished Research Staff in the Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL); Turing Fellow at Manchester University; an Adjunct Professor in the Computer Science Department at Rice University. He is the director of the Innovative Computing Laboratory at the University of Tennessee. He is also the director of the Center for Information Technology Research at the University of Tennessee which coordinates and facilitates IT research efforts at the University.